skip to main content


Search for: All records

Creators/Authors contains: "Hubicki, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While terrestrial locomotors often contend with permanently deformable substrates like sand, soil, and mud, principles of motion on such materials are lacking. We study the desert-specialist shovel-nosed snake traversing a model sand and find body inertia is negligible despite rapid transit and speed dependent granular reaction forces. New surface resistive force theory (RFT) calculation reveals how wave shape in these snakes minimizes material memory effects and optimizes escape performance given physiological power limitations. RFT explains the morphology and waveform-dependent performance of a diversity of non-sand-specialist snakes but overestimates the capability of those snakes which suffer high lateral slipping of the body. Robophysical experiments recapitulate aspects of these failure-prone snakes and elucidate how re-encountering previously deformed material hinders performance. This study reveals how memory effects stymied the locomotion of a diversity of snakes in our previous studies (Marvi et al., 2014) and indicates avenues to improve all-terrain robots. 
    more » « less
  2. Mobile robots of all shapes and sizes move through the air, water, and over ground. However, few robots can move through the ground. Not only are the forces resisting movement much greater than in air or water, but the interaction forces are more complicated. Here we propose a soft robotic device that burrows through dry sand while requiring an order of magnitude less force than a similarly sized intruding body. The device leverages the principles of both tip-extension and granular fluidization. Like roots, the device extends from its tip; the principle of tip-extension eliminates skin drag on the sides of the body, because the body is stationary with respect to the medium. We implement this with an everting, pressure-driven thin film body. The second principle, granular fluidization, enables a granular medium to adopt a dynamic fluid-like state when pressurized fluid is passed through it, reducing the forces acting on an object moving through it. We realize granular fluidization with a flow of air through the core of the body that mixes with the medium at the tip. The proposed device could lead to applications such as search and rescue in mudslides or shallow subterranean exploration. Further, because it creates a physical conduit with its body, electrical lines, fluids, or even tools could be passed through this channel. 
    more » « less